
git clone <url>
From remote history; creates local folder
git clone git@github.com:mikec/myproj.git

git init
Create a new Git repository from your current
directory; add and commit files then:

git remote add origin <url>;
git push --set-upstream origin master
From local history to blank remote history
git remote add origin
git@github.com:mcombs964/myproject.git

git remote --verbose # verify origin url
If the url is wrong you can use:
git remote remove origin

Feature Branch Workflow
with Git Cheat Sheet

1. Create

2B. Review Work
git status

Files staged and in working directory.

git diff [file] # working vs stage code changes
Code changes between working and stage

git diff HEAD # working vs last commit code changes
Code changes between working and last commit

git diff --cached # stage vs last commit code changes
Code changes between stage and last commit

git diff <commit1> <commit2> # history code changes

git log [—oneline | --graph | --decorate]
History of commits

git log <branch> --not master
History of commits for branch

git show <commit>[:<file>]
History of commits and code changes. :file
narrows scope

git reflog [--relative-date | --all]
Show changes to HEAD and SHA-1s

1. Branch
git branch [--all | --verbose]

List branches. --all shows local and remotes

git branch <new-branch> [source-branch]
Create local branch based on HEAD or source

git checkout <branch1>
Switch to branch

git branch --move <branch1> <branch2>
Rename branch1 to branch2

git branch --delete <branch1>
Delete local branch1

git stash [list | apply | drop]
Stores code so you can switch branches without
commit. Restore with apply, remove with drop.

https://mikec964.github.io/ Updated: July 13, 2019

2C. Commit/Revert
git commit [--all | --message "<description title>"]

Copy staged changes into local history. See
Commit Message Style on back.

git commit --amend
Combine new changes with last commit,
overwrite last description

git reset HEAD^
Undo local, unpushed commits. Roll back code
(move HEAD and branch) to prior commit.

git revert <commit>
Unapply pushed, remote commits. Undoes
changes in commit, then creates a new commit.

git checkout <commit> <file>
Bring file from specified commit in local history
to working directory.

2B. Add/Reset
git add . | --update | --patch <files> | <files>

Add all new/modified/deleted or specified files
to stage. --update skips new files. --patch has
interactive prompts to add parts of files.

git mv <files>
Rename or move files; update stage

git rm [--cached] <files>
Delete file from working area and index.
--cached removes from history only.

git reset [files]
Unstage uncommited work; remove all (or
specified) files from stage without changing
working directory.

git reset --hard
DANGER! Delete uncommited work.

git clean [--dry-run | --force]
DANGER! Delete unstaged files.

Using Git with a Feature Branch Workflow
1. Create, checkout branch.
2A. Create, modify, delete code. (Not shown)
2B. Add files to stage and review work.
2C. Commit files to history often. Repeat 2A.
3. Ready? Clean up and combine commits.
4. Merge branch into master; tag master
5. Push, delete branch.

5. Push/Pull
git push origin [branch] [--all | --tags]

Pushes current branch. --all pushes all branches,
--tags pushes tags.

git push --delete origin <branch>
Delete branch on origin, retain local branch

git pull origin <branch>
Get changes from remote and merge

git fetch origin <branch>
Get changes from remote without merge

git cherry-pick <commit>
Bring changes (not all files) from a commit in
history into working directory

4. Resolve Merge Conflicts
Git will try to resolve merges. Successes will be
staged, conflicts will be unmerged. Use git status
to list them. See Figures 1, 2 on back.

git checkout master; git merge <branch>
Merge branch into master.

git checkout master; git merge --no-ff <branch1>
Merge without fast-forward to create a merge
commit. This aids history visualization. See
figure 2.

git diff [--base | --ours | --theirs] <file>
Compare file to master (base) file, current
master (ours) changes, branch (theirs) changes,
or all. See figure 4.

Fix Merge Conflicts Manually
1. Identify which files have merge conflicts

with git status.
2. Manually resolve conflicts in each file with

vim or mergetool. Conflicts are marked with
<<<< through >>>>.

unchanged code for context
<<<< HEAD (current branch
marker)
current code
==== (branch separator)
incoming code
>>>> branch-name (incoming
branch marker)

3. Choose current or incoming code or merge,
then delete markers and separator.

4. Use git add for resolved file, delete .orig file.
5. Use git commit when all files are resolved.

@mike3d0g

Working directory Stage (index) Local history Remote history
origin

3. Clean Up Commits
DANGER! Rewriting history (this) is for private,
not public branches.

git rebase --interactive master
Clean up/combine commits and modify history
of current branch. In editor, change command
per line to pick, squash, etc.

After rebase, use push origin [branch] --force

push commit add

 pull,
 fetch pull (also merges)

git mergetool <file>
Launch previously configured GUI mergetool.
Make appropriate changes, then confirm at CLI.

git tag [--list [pattern] | -n [num]]
List tags. -n shows 1 or num lines of annotation

git tag [--delete] <tagname> [old-commit]
Tag current branch or old commit

git push --delete <tagname>
Delete tag in remote history

https://mikec964.github.io/

git config --global user.name “Mike Combs”

git config --global user.email "mike@example.com”

git config --global core.editor “vim”

git config --global merge.tool "diffmerge"

git config --global credential.helper osxkeychain
Use keychain for passwords instead of
reprompting. Also: git-credential-gnome-
keyring or git-credential-winstore

git config --global --edit
Open ~/.gitconfig global config file in editor for
editing

vim .gitignore
Edit this to ignore temporary, object, project,
and other files. Find examples at https://
github.com/github/gitignore. For example:
.DS_Store
__pycache__/
*.py[cod]
static/

To track static dir but not its contents:
touch static/.gitignore; git add -f static/.gitignore

git rm --cached <files>
Remove files from history in case they got there
before you put them in .gitignore

git status --ignored
Show files ignored due to .gitignore

git config --global alias.<name> <cmd>
Define an alias for <cmd>
git config --global alias.loga "log --graph --decorate --
oneline"

git <alias>
Use previously defined alias

This cheatsheet is organized around the Feature
Branch workflow with common commands and
undos. The local repository is called history and
the remote repository is called remote history (or
origin, its most common name). The default
branch name in a new history is master. Options
are shown in long form for better mnemonics;
--message instead of -m.

HEAD: current commit (and branch)
HEAD^: First parent of HEAD
<commit>: HEAD, tag name, branch name, or
leading substring of the commit SHA-1
<file>: filespec
<branch>: branch names cannot contain spaces

The Feature Branch Workflow assumes a new
branch for every new feature. The master branch
never has broken code, and released versions are
tagged. Feature branches might be merged into a
dev branch, then merged into master per release.

Commit Early and Often Commits should be
atomic (implement one feature or fix).
Committing a partial file may help. Regardless,
commit anytime you want and then use rebase --
interactive to clean them up.

Commit Message Style
Title (50 chars), blank line, body (72 chars wrap).
Semantic title example: "feat: add play gesture",
types are chore, docs, feat, fix, refactor, style,
or test. See Semantic Commit Messages.

When to Push
Private branches can be pushed anytime with the
understanding that nobody else will check them
out. Others should be cleaned up before pushing.

Merge into the Master Branch
Feature branches with one commit can use fast
forward commits; others should use merge
commits. After merge, delete the branch.

Don't forget: git help [command]

References
Git in Practice by Mike McQuaid • Official Docs
at git-scm.com • A Visual Git Reference •
Visualizing Git Concepts with D3 (interactive) •
Atlassian Git Tutorial • Interactive Git Cheatsheet
• Escape a Git Mess

git blame --date=short -w -s -L 40,60 <file>
For each line in file, show author, date, and
commit. -w ignores white space, -s hides author
name, -L specifies range of lines

Bisect uses a binary search of history to help find
a commit that introduced a bug.

git bisect start; git bisect bad;
git bisect good <commit>
Start regression process, indicate HEAD is bad,
identify last known good commit. Bisect will
now checkout a revision within these bounds.

git bisect <bad | good>
After you check for a problem, use this to
checkout the next commit. Repeat until problem
is isolated.

git bisect reset
End regression process, return to HEAD

git bisect log
Show bisect steps

Regression

git log <since id>..<until id> # show range of commits
git log -<limit> # limit number of commits shown
git log --author="<pattern>"
git log --decorate # show branch and tag names
git log --graph # show graph of commits
git log --grep="<pattern>"
git log --oneline # show each commit on 1 line
git log -p # show full diff
git log --stat # show files and changed line counts

Log Options

Git Basics Configure FF-Merge, Merge Commit

3-Way Merge
In this merge, Git cannot automatically resolve
line D because it has been changed in the branch,
and then later in the master. Usually ours is the
current master branch, and theirs is the feature
branch.

In the figures, 'A' is the first commit and
subsequent commits point to their parents.

Rebase
git rebase master <branch>

If master changed after branch fork, create new
commits to base branch on current master. See
figure 3.

https://seesparkbox.com/foundry/atomic_commits_with_git
https://seesparkbox.com/foundry/semantic_commit_messages
https://www.manning.com/books/git-in-practice
https://git-scm.com/docs
https://marklodato.github.io/visual-git-guide/index-en.html
http://onlywei.github.io/explain-git-with-d3/
https://www.atlassian.com/git/tutorials
http://ndpsoftware.com/git-cheatsheet.html
http://justinhileman.info/article/git-pretty/git-pretty.png

